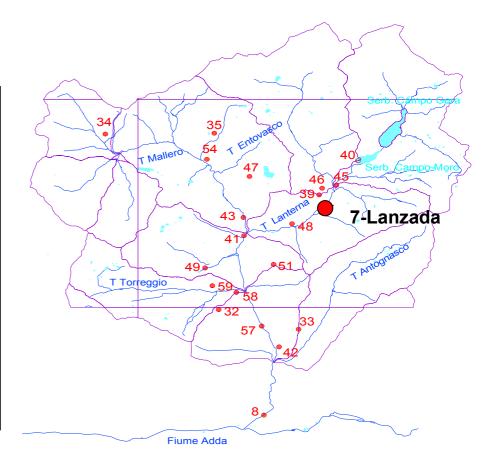


Struttura lavoro:

<u>Obiettivo</u> (WKP2): Definire i comportamenti ottimali nella gestione della risorsa idrica all'interno della Regione Lombardia:

- Modello operativo :
 - → simulazione deflussi superficiali
- Gestione prelievi e ripartizione della risorsa idrica:
 - → utilizzo ottimale della risorsa
 - → salvaguardia qualità dell'ambiente fluviale

Attività del gruppo:


- Collaborazione con i WKPs partecipanti al progetto: archivio dati comune
- Studio Bacino della Valmalenco:
- Raccolta ed archiviazione dati idrologici (pioggia, altezza manto nevoso, temperatura, deflusso)
- Ricostruzione dati pluviometrici mancanti: correlazione tra stazioni limitrofe (analisi ietogrammi di pioggia)
- Dipendenza delle principali grandezze idrologiche dalla quota assoluta
- Determinazione delle caratteristiche morfometriche di maggiore interesse
- F.F.T. (Fast Fourier Trasform) di serie temporali per i dati di temperatura media mensile e di pioggia mensile
- Verifica applicabilità modelli esistenti trasformazione afflussi-deflussi (HEC-HMS, SRM, UEB)

Il bacino della Valmalenco

Base dati di misure idrologiche:

- Stazioni automatiche (fonte A.R.P.A.)
- Dati da studi precedenti (UNIPV)

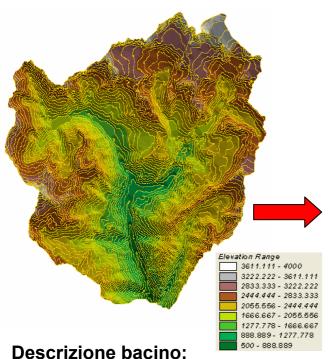
N	Stazione	[m s.l.m.]	Pluviometrie Valmaler	Termometrie ICO	Nivometrie	
				変称に	ACC.	
7	Lanzada 🔼	930	1913-20)1	1989-2001		2
8	Sondrio Sondrio	7 300	1913-1973			111/2
32	Alla Braccia	<u>h</u> 1650	1000 2001	1989-2001		
33	Alpe Costa	1672	1989-2001	19 9-2002	1989-2001/	سرح
34	Alpe Oro	2040	1989-2001		1990-2001	Š.
35	Alpe Entova	\$ P	198972001	1989-2002		\vdash_{i}
39	Campo Franscia	17 25	1989-2001	(1989-1999)		2
40	Campo Moro	11 200	1968-2002/12	1986-2002	1990-2001	1
41	Chiesa	19 0 S	1987-20015			
42	Cucchi	66 115	198941999	498941499 🔭	1989-1998	1
43	Curlo	1036	1989-2001			
45	Franscia	499	1987-2001			
46	Franscia Chiudee	1650	1900			
47	Funivia Bernina	2014	1989-2001	1989-2001	1990-2001	
48	Ganda di Lanzada	八〇ののドイ	1989-2001	1989-2001	ンスス人	
49	Laghi di Chiesa	1596	1989-2001	1989-2001	1990-2001	
51	Piazzo Cavalli	-V1719	1989-2001	1989-2001	1990-2001	3
54	S. Gîuseppe	1428	1987-2001			-
57	Spriana	645	1989-2001/1			
58	Torre Si Maria	3750	1989-2001	1989-2001		
59	Vál Torreggio	1283	1999-2001	1989-2001	1999-2001	

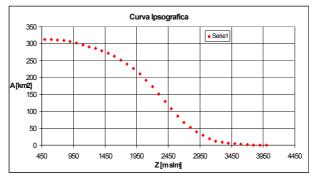
Lanzada (983 m s.l.m):

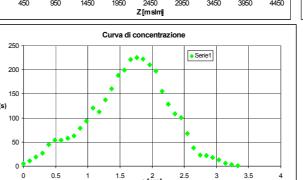
Coefficiente di correlazione (dati medi mensili) :

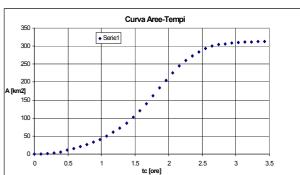
$$Correl(X,Y) = \frac{\sum (x-\overline{x})(y-\overline{y})}{\sqrt{\sum (x-\overline{x})^2 \sum (y-\overline{y})^2}}$$

Serie dati non disponibili


Coeff. Correlazione dati di pioggia


Coeff. Corrrelazione dati di temperatura


I	Stazione	59	58	57	54	51	49	48	47	46	45	43	42	41	40	39	35	34	33	32	8	7
I	7	0.20	0.20	0.89	0.87	0.87	0.72	0.66	0.86	0.79	0.82	0.83	0.84	0.84	0.77	0.83	0.82	0.41	0.76	0.68	0.80	1.00
I	7	1.00	0.96			0.97	0.93	0.97	0.98				0.97		0.98	0.97	0.97		0.97	0.70		1.00


Il bacino della valmalenco

Caratteristiche morfometriche del bacino → parametri necessari per l'utilizzo del modello di calcolo

Ipotesi curva di concentrazione del Bacino:

- tc proporzionale alla distanza L
- L proporzionale alla quota

- Area bacino=315 km²
- Area ghiacciai (Scerscen, Fellaria, Disgrazia) = 52 km²
- Torrente Mallero: L=29 km, b_m=18 m, i_m=0.079
- Torrente Lanterna: L=13 km b_m=12 m, i_m=0.12
- Torrente Antognasco: L=13.2 km, b_m=4 m, i_m=0.21
- Torrente Torreggio: L=8.6 km b_m=15 m, i_m=0.20
- Territorio: 50% area boschi

25% area pascoli

15% area urbanizzata

5% area coltivata

Stima del tempo di corrivazione tc:

$$tc = (4*\sqrt{A} + 1,5*L)/(0.8*\sqrt{Z_m})$$
 Giandotti

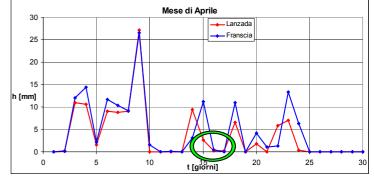
Dove:

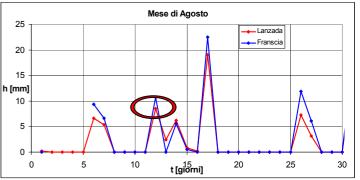
- tc tempo di corrivazione [ore]
- A area bacino [km²]
- L lunghezza asta principale [km]
- Zm altezza media del bacino [m]

Il Bacino della Valmalenco

Ricostruzione giornaliera dati pluviometrici mancanti (analisi ietogrammi di pioggia tra stazioni limitrofe)

Stazione di Lanzada (983 m s.l.m.):

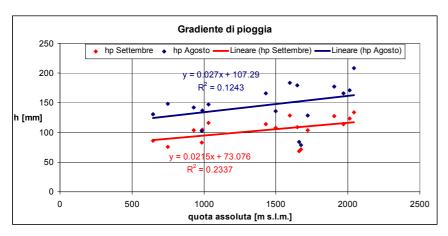

- Campo Franscia (39) e Ganda di Lanzada (48) presentano gli stessi "buchi"
- Analisi Coefficiente di Correlazione
- Analisi ietogrammi di pioggia (rapporto medio mensile):

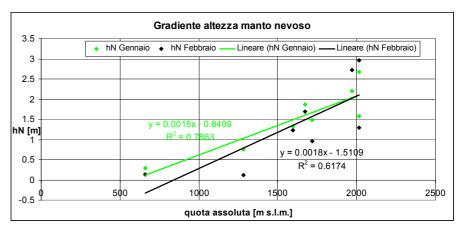

Mese di Aprile Kapr=0.22 Mese di Agosto Kago=8.49

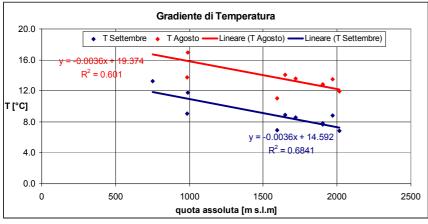
Stazione di Lanzada anno 1990 h pioggia giornaliera [mm]											
G	F	M	Α	М	G	L	Α	S	0	N	D
0	0	0	0	0	0	9	0.2	0.2	0.8	12.4	(
0	1.8	0	0.2	0	0.4	9.4	0	0	0.2	0.2	(
0	0	0	11	0	0	14.6	0	0	0	5.2	(
0	0	0	10.6	0	5.2	0	0	1.8	34	5.4	(
0	0	0	1.6	0	26.4	1.4	0	0.2	0.2	0	(
0	0	0	9	1.8	19	0.4	6.6	0	0	0.6	0.2
0	0	0	8.8	0	14.4	0	5.4	7	7.4	0.2	0.6
0	0	0	9	0	17.6	0	0	0	0.2	0	C
0	0	2.8	27.2	0	3.8	0	0	0	0	0	25.8
0	0	0	0	0	0	0	0	0	0	0	0.2
0	3.2	0	0	0	0	0	0	0	0	0	0
0	2.8	0	0	0.2	9	6	8.5	0	14	0	(
0	2	0	0	0	6.2	δ	2.4	0	1	0	0
0	7	0	9.4	0	0.6	0	6.2	0	0	0	(
0	0	0	26	0.2	0.2	0	0.8	1.6	0	0	0.4
0	0		0.2	€ 8.8	0	0	0.2	0	5	0	(
0	0	8	5	0	0	0	19	0.2	10.4	0	(
0	0	0	6.6	1.8	3	0	0	0.2	14.4	0	(
0	0	0	0	0	0	0	0	0	0.2	0	(
0	0	0	1.8	8.4	20.2	0	0	0	0	2	(
0	0	0	0	1.4	14.8	0	0	0	0	27	(
0	0	0	5.8	0.6	1.8	0	0	0	1	58.2	(
0	0	0.2	7	1.2	1.6	0	0	21.4	0.2	4	(
0	0	0	0.4	36.8	0	0	0	10.2	0	0.4	(
0	0	0	0	4.2	0	0	0	0	4	37.8	0.2
4.6	0	0	0	0	0	3.6	7.2	0	7	1.8	
0	5.8	0	0	6.6	7.2	0.4	3.2	0	13.8	0	1.4
13.8	0	1.8	0	0	10.8	0	0	0	2	0	(
4.2		0	0	0	4.6	0	0	0	16.8	0	(
2.2		0	0	0	0.2	6.8	0	0.6	1.4	0	(
0		0		0		11.2	15		7.4		(

Coeff. di correlazione mensile:

Stazione	46	45	40
7	0.79	0.82	0.77


Il Bacino della Valmalenco


Studio della dipendenza delle grandezze idrologiche di interesse dalla quota assoluta [m s.l.m.]:


- Altezza di pioggia h [mm]
- Temperatura T [°C]
- Altezza del manto nevoso dal suolo hn [m]

Scopo: - Determinazione dello zero termico → per distinguere la precipitazione nevosa dalla pioggia → per definire l'inizio della fase di scioglimento del manto nevoso

- Studio del fenomeno dell'evapotraspirazione

Gradienti determinati mediante i valori medi mensili:

- **Gradiente di pioggia** (17 stazioni serie dati dal 1990-2001)
- Gradiente di temperatura (10 stazioni serie dati 1989-2001)
- Gradiente altezza del manto nevoso (8 stazioni serie dati dal 1990-1999)

Analisi dei dati: la F.F.T. (Fast Fourier Trasform)

Scopo: individuare in una sequenza temporale le componenti che la costituiscono: annuali, pluriannuali casuali. L'analisi è finalizzata all'ottimizzazione dell'uso dei dati disponibili anche per la realizzazione di un modello di generazione delle piogge e delle temperature utilizzando ed estendendo serie brevi di osservazioni.

Rappresentazione di una funzione periodica f (x) di periodo T sotto forma di **somme di armoniche** approssimando la funzione mediante <u>polinomi trigonometrici</u>:

$$f(x) = \sum_{n=1}^{N} (a_n \cdot \cos(\omega t) + b_n \cdot \sin(\omega t)) \qquad \text{Frequenza: } \omega = (2 \cdot \pi^* n) / T \qquad \text{Ampiezza: } a_n = (2 / T) \int_0^T f(x) \cos(\omega t) dt$$

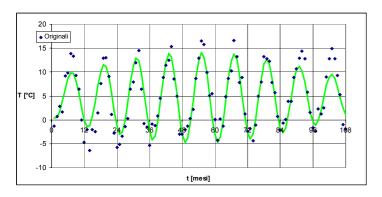
$$b_n = (2 / T) \int_0^T f(x) \sin(\omega t) dt$$

Analisi:

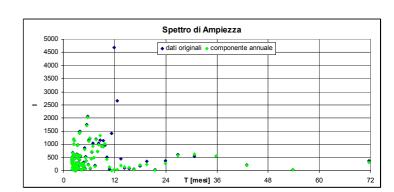
- Dati mensili di pioggia per 21 stazioni con serie dati dal 1990 al 1998
- Dati medi mensili di temperatura per 13 stazioni con serie dati dal 1990 al 1998

Componenti:

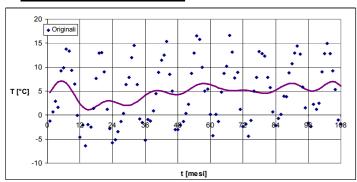
Il segnale originario è stato scomposto in tre differenti componenti:

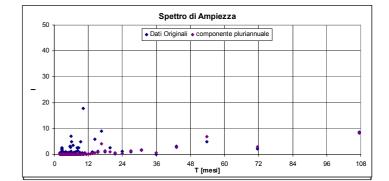

- Annuale → componente periodica (T=12 mesi) del segnale originario (legata alla stagionalità degli eventi climatici)
- Pluriannuale → componenti del segnale con T>12 mesi (legate all'ubicazione del bacino)
- <u>Casuale o sub-annuale</u> → componente *casuale (*T<12 mesi)


F.F.T.: Fast Fourier Trasform

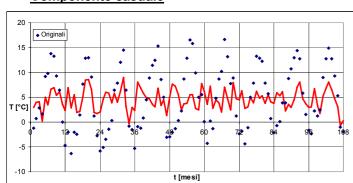

Stazione di Lanzada

Permiometrie (dati medsithelipibologitæntaple 1990 al 1998)

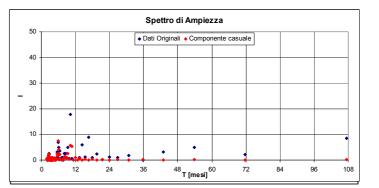

- Componente stagionale



- Componente pluriannuale



T>12 mesi

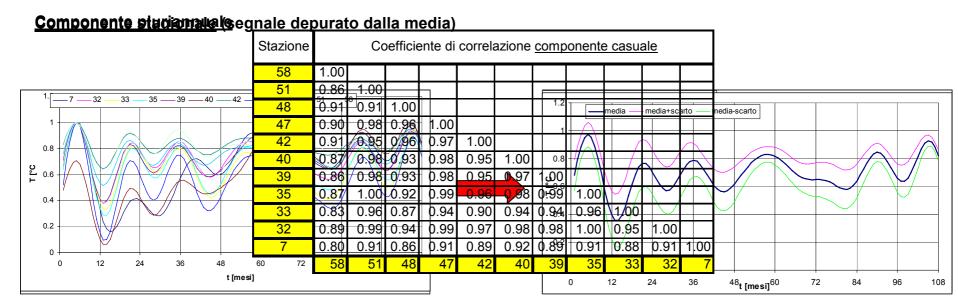


- Componente casuale

T<12 mesi

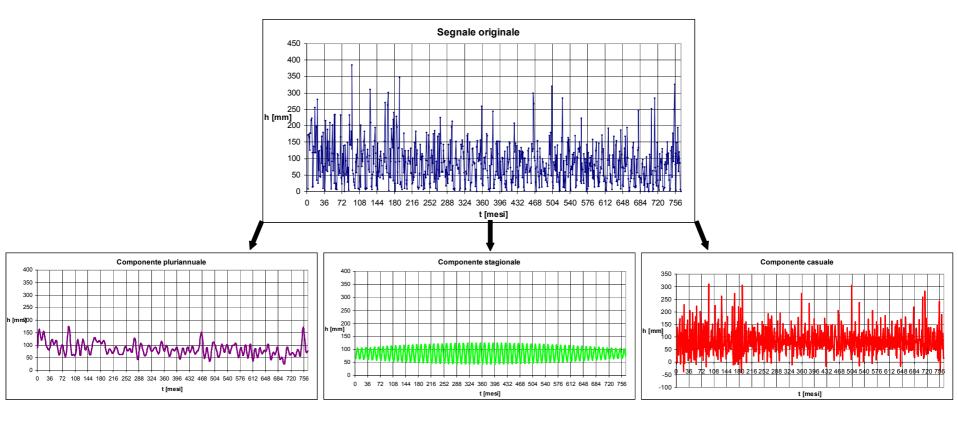
Analisi dati: F.F.T

Analisi dei dati di pioggia e di temperatura:


- Normalizzazione dei segnali: componente stagionale, componente pluriannuale
- Confronto tra i segnali ottenuti per tutte le stazioni
- Determinazione di un segnale medio per la componente stagionale e pluriannuale

→ Possibilità di generare una serie "lunga" di dati

- Calcolo del coefficiente di correlazione per la componente casuale


→ Confronto tra le serie da utilizzare nel modello numerico

Esempio: Analisi dati medi mensili di temperatura dal 1990-1998 (11 stazioni)

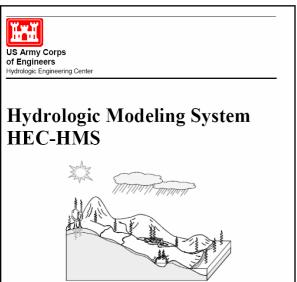
La serie storica di Lanzada

Dati pluviometrici mensili, osservazioni: 1913-2001

Possibilità di generare serie di osservazioni "lunghe"

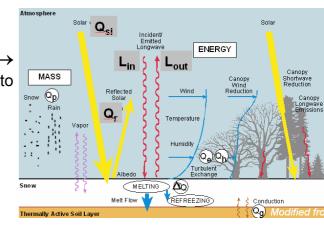
- → Considerando la componente stagionale di Lanzada (eventualmente depurata dalla media)
- → Aggiungendo alla componente stagionale la componente pluriannuale e casuale di ogni singola stazione (eventualmente con la media della stazione) oppure considerando un segnale medio caratteristico di tutto il bacino

Il modello di trasformazione afflussi-deflussi


Sono stati presi in considerazione i seguenti modelli:

HEC-HMS Hydrologic Eng. Center - Hydrologic Modeling System (US Army Corps of Engineers)

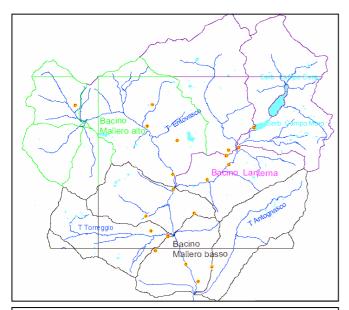
SRM Snowmelt Runoff Model (Martinec, Rango & Roberts)


UEB Utah Energy Balance Snow Accumulation and Melt Model (Utah Water Research Laboratory

- Utah State University)

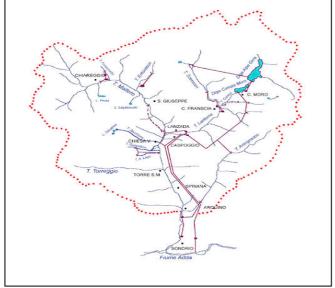
UEB: - Basato sul calcolo del bilancio energetico

- <u>Bilancio energetico</u> (calore scioglimento manto nevoso):
radiazione solare netta (Qsi-QR)
radiazione lunga frequenza (LIN-LOUT)
trasporto di calore sulla sup Qh
calore latente di condensazione Qe
flusso calore dal terreno Qg
calore portato dalla precipitazione QP



HEC-HMS: Possibilità di simulare trasformazione afflussi-deflussi sui lunghi periodi:

- Modello del bacino (schema reticolo fluviale)
- Perdite idrologiche (costante, SCS, esponenziale...)
- Evapotraspirazione (Blaney e Criddle)
- Scioglimento manto nevoso (metodo grado-giorno)
- Trasformazione afflussi-deflussi (modello di Clark, corrivazione, Nash)


```
SRM
Q = average daily discharge [m3s1]
     runoff coefficient expressing the losses as a ratio
     (runoff/precipitation), with cs referring to snowmelt and cs to rain
    degree-day factor [cm · °C' 1 d'] indicating the snowmelt
     depth resulting from 1 degree-day
    number of degree-days [°C • d]
\Delta T = the adjustment by temperature lapse rate when extrapolating the
     temperature from the station to the average hypsometric elevation of
 S = ratio of the snow covered area to the total area
    precipitation contributing to runoff [cm]. A preselected threshold
     temperature, T_{00|1}, determines whether this contribution is rainfall
     and immediate.
A = area of the basin or zone [km2]
k = recession coefficient indicating the decline of discharge in a
     k = \frac{Q_{m+1}}{} (m, m + 1 are the sequence of days during a true
n = sequence of days during the discharge computation period. Eq. (1)
    is written for a time lag between the daily temperature cycle and
    the resulting discharge cycle of 18 hours. In this case, the number
    of degree-days measured on the nth day corresponds to the discharge
    on the n + 1 day. Various lag times can be introduced by a subroutine.
      = conversion from [cm • km2 • d1] to [m3s1]
```

Il modello di trasformazione afflussi-deflussi

HEC-HMS (US Army Corps of Engineers):

- <u>Modello bacino:</u> (Area competenza stazioni, schema corsi d'acqua principali)
- <u>Modello metereologico</u>: (ietogrammi di pioggia per ogni stazione, evapotraspirazione, scioglimento del manto nevoso)
- <u>Stima parametri</u> (perdite idrologiche, modello di simulazione trasformazione afflussi-deflussi, simulazione fenomeni fisici)

Analisi modello:

- Suddivisione del bacino in tre sottobacini
- Centrali idroelettriche Campo Moro, Lanzada, Sondrio
 - → volumi invasati nei serbatoi
 - → portate turbinate
 - → volumi d'acqua affluiti a ciascun impianto provenienti dalle diverse parti del territorio
- -Taratura del modello di calcolo
- Simulazione trasformazione afflussi-deflussi

Conclusioni

- L'attività è stata condotta principalmente sull'<u>analisi dei dati idrologici</u> (pioggia, altezza manto nevoso, temperatura) e sulle caratteristiche morfometriche del bacino della Valmalenco.
- <u>Metodologia</u> di acquisizione da immagini satellitari (Dip. di Elettronica dell'Università di Pavia, sezione Telerilevamento) dell'<u>andamento della copertura nevosa</u> nell'arco dell'anno su tutto il bacino della Lombardia.
 - → Analisi dettagliata del fenomeno fisico della formazione e propagazione del deflusso
 - → Messa a punto di un modello di simulazione in continua della trasformazione afflussi-deflussi sui lunghi periodi
- Il modello viene <u>tarato e verificato</u> sul bacino della Valmalenco.
 - → Il modello di simulazione afflussi-deflussi verrà esteso a tutto il territorio della Lombardia
 - → Utilizzo specifico del modello in sinergia con i contributi forniti dagli altri gruppi di ricerca